Comparison of models and measurements for whole-farm ammonia emissions

Tom Misselbrook, Sarah Gilhespy Daniel Sandars, Adrian Williams, Colin Burton

Rachel Thorman

Rob Pinder

OBJECTIVES

Compare emissions from on-farm mitigated sources with experimental studies

Estimate emissions using 'whole-farm models' and assess abatement scenarios

STRUCTURE

Details of 2 study farms

Emission measurement methodology

Models used to estimate emissions

Results

STUDY FARMS

DAIRY FARM

- 180 dairy cows, cubicle housing (slurry) c. 6 months
 Calves and followers on straw bedding (FYM)
 - Slurry lagoon
- Slurry applied to grassland, FYM to maize ground

Mitigation measures: Slurry injection Rapid incorporation of FYM

STUDY FARMS

PIG FARM

- 500 sows, 1800 finishing pigs
- Various housing types (slatted, straw-bedded, natural and mechanical ventilation)
- Slurry lagoon
- Slurry and FYM applied to arable land

Mitigation measures: Slurry lagoon cover Slurry band spread Rapid incorporation of FYM

MEASUREMENTS

Dairy farm

Manure spreading NOT GRAZING

MEASUREMENTS

MODELS

- UK Ammonia Emissions Inventory Model UK_AEI
- MAST
- NARSES
- MEASURES
- Farm Emissions Model (FEM)

UK Ammonia Emissions Inventory

- Spreadsheet model at UK-scale (not easy to use at farm scale)
- Detailed partial emission factors (generally expressed per animal)
- Detailed activity data (livestock census, manure management practices)
- Updated annually
- NOT mass-conservative or N-flow

Pain et al., 1998, Atmospheric Environment 32, 309-313; Misselbrook et al., 2000, Atmospheric Environment 34, 871-880

MAST

ʻMAST Ammo T	MAST 2000 IN AST 2000	
	Dairy Mode Beef Mode Eigs Mode Sheep Mode Poultry Mode	

'MAST' - Model for Ammonia Systems Transfer

- Farm-scale model using UK_AEI emission factors
- Not updated since 2000

NARSES

'NARSES' – National Ammonia Reduction Strategy Evaluation System

- Based on UK_AEI structure (detailed partial EF)
- EF expressed as %TAN
- Mass-conservative N-flow model
- Includes cost-curve analysis

Webb and Misselbrook, 2004, Atmospheric Environment 38, 2163-2176

MEASURES

'MEASURES' – Multiple Environmental outcomes from Agricultural Systems

- Includes many components other than ammonia
- Ammonia emission algorithms largely empirical from UK emissions inventory with some revisions

'FEM' – Farm Emissions Model

- Specifically for slurry-based dairy farm
- Mass-conservative N-flow model
- Process-based partial emission factors
- Monthly emissions output

RESULTS

MITIGATION

Dairy farm

NONE!!!

- Shallow injector not used (contractor instead)
- Ploughing within 24h not achieved

MITIGATION

Pig farm

Covered slurry lagoon

Band spread slurry

Rapid FYM incorporation

- emission almost zero
- emission 18-36% TAN applied
- emission 56% TAN applied
- >80% prior to ploughing

Emissions agree well with experimental studies, giving confidence to emission reduction efficiencies determined in controlled experiments

Dairy farm – pre abatement

■ MAST ■ UK_AEI ■ NARSES ■ FEM ■ MEASURES ■ Measured

Pig farm – pre abatement

CONCLUSIONS

>Where practised (!), mitigation measures gave reductions equivalent to those from previous experiments

Different models gave different totals and reductions

- national vs. local scenarios
- requirement for process-based models
- importance of correct models for 'pollution swapping'

ACKNOWLEDGEMENTS

Funding was provided by the Department for Environment and Rural Affairs (UK)

Support and cooperation of the two farm manegers is gratefully acknowledged